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Abstract. We consider filling or wedge-wetting transitions occurring in a (1 + 1)-dimensional
wedge geometry with both thermal and random-bond disorder using effective interfacial Hamil-
tonian models. For ordered systems the problem may be solved using transfer-matrix methods
for quite arbitrary choices of interfacial binding potential and gives a complete classification
of the possible critical behaviours. For random bonds the transition is studied for short-ranged
forces using the replica trick and the wedge-wetting critical exponents are identified. Our results
establish a remarkable relation between the mid-point height probability distribution PF (l0) at
filling transitions and the appropriately defined height distribution function Pπ (l; θπ ) at planar
wetting transitions. We observe that provided the wetting specific heat component αs = 0, then, in
the scaling limit, PF (l0) = Pπ (l; θπ −α)where θπ is the contact angle and α is the tilt angle of the
wedge. This relation completely determines the allowed values of the filling critical exponents in the
fluctuation-dominated regimes. Conjectures regarding interfacial fluctuation effects in finite-size
two-dimensional systems are also made.

1. Introduction

In this article we investigate the nature of fluctuation effects occurring at two-dimensional filling
or wedge-wetting transitions in the presence of bulk disorder (random-bond impurities). Our
purpose is to extend recent studies of fluid adsorption in two- and three-dimensional wedges
with purely thermal excitations, which have highlighted the remarkably strong influence of
interfacial fluctuations on the critical singularities at filling transitions [1, 2]. In general, the
fluctuation-related properties of filling transitions are quite different to those predicted to
occur for wetting at a planar wall. However, in two dimensions we shall show from explicit
transfer-matrix-based calculations that for systems with short-ranged forces (belonging to the
most strongly fluctuation-dominated regimes) and in the presence of marginal long-ranged
interactions there is an equivalence of the (appropriately defined) critical exponents for filling
and wetting. This equivalence extends to the detailed scaling properties for the interfacial
height distribution function and is valid for ordered and disordered systems. This is strongly
suggestive that properties of interfacial fluctuations occurring in different two-dimensional
geometries satisfy a covariance relation. To continue our introduction we present some
further details concerning the phenomenology and critical singularities characteristic of filling
transitions and provide a brief synopsis of our paper.

Consider a wedge (in d = 3 dimensions) formed by the union of two flat walls tilted at
angles ±α to the horizontal. Axes (x, y) are oriented across and along the wedge respectively
and the whole system is supposed to be in contact with a bulk vapour phase at temperature
T and chemical potential µ tuned so that the system is at bulk liquid–vapour coexistence
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(µ = µsat). Macroscopic thermodynamic arguments [3–5] show that the wedge is completely
filled with liquid for temperatures T � TF , where the filling temperature TF is specified by

θπ(TF ) = α (1.1)

and θπ(T ) denotes the contact angle of a liquid drop on a planar substrate. Consequently
the filling temperature TF is necessarily lower than any wetting transition temperature TW
characteristic of the planar wall–vapour interface. Indeed filling may happen in the absence of
wetting transition, i.e. even if partial wetting is present up to the bulk critical temperature Tc.
The filling transition occurring as T → T −

F may be first or second order, corresponding to the
discontinuous or continuous divergence of the mid-point interfacial height l0 (measured from
the bottom of the wedge). Importantly, the order of the filling transition is not necessarily the
same as that of the wetting transition present in the planar system. In particular, continuous
filling transitions can occur in rather general circumstances even if the walls of the wedge
exhibit first-order wetting [2]. This means that the observation of continuous filling transitions
is a realistic experimental possibility even in the absence of any known solid–fluid interfaces
exhibiting continuous (critical) wetting.

From a theoretical perspective, continuous filling transitions are also highly interesting
because the manifestations of the soft-mode interfacial-like fluctuations are much stronger (in
general) than that predicted to occur at continuous wetting [6–9]. The reasons for this can be
traced to the extreme anisotropy of these fluctuations in the wedge geometry which lower the
effective dimensionality of the soft interfacial mode [2]. Consider for example the interfacial
height–height correlation function which is characterized by correlation lengths across (ξx)
and along (ξy) the wedge. Effective interfacial Hamiltonian models [2] of filling predict that as
T → T −

F the correlation length ξy diverges much faster than ξx (which is always comparable
with the height l0). This implies that the dominant fluctuations at three-dimensional filling have
a one-dimensional character with a soft-mode corresponding to long-wavelength fluctuations
of the local filling height l0 in the y-direction. On the basis of this picture a general fluctuation
theory for three-dimensional filling has been proposed [2] and leads to the following predictions
for the critical exponents describing the divergence of the interfacial height l0 ∼ (TF −T )−β0 ,
roughness ξ⊥ ∼ (TF − T )−ν⊥ and correlations length ξy ∼ (TF − T )−νy . There are two
fluctuation regimes depending on the exponent describing the range of the intermolecular
forces p (see below). In the mean-field regime (p < 4)

β0 = 1

p
νy = 1

2
+

1

p
ν⊥ = 1

4
(1.2)

whilst in the fluctuation-dominated regime (p > 4)

β0 = 1

4
νy = 3

4
ν⊥ = 1

4
. (1.3)

These critical exponents are totally different those pertaining to wetting in three dimensions
[6, 8] and in particular predict a universal roughness exponent, ν⊥ = 1

4 , independent of the
range of the forces.

The general fluctuation theory presented in [2] can be easily generalized to other
dimensions and in particular for the two-dimensional wedge leads to the predictions

β0 = 1 ν⊥ = 1 for p > 1 (1.4)

and

β0 = 1

p
ν⊥ = 1 + p

2p
for p < 1 (1.5)
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which again fall into fluctuation-dominated and mean-field regimes respectively. This
behaviour is fully consistent with the results of detailed transfer-matrix calculations of an
inhomogeneous effective Hamiltonian model of two-dimensional (d = 2) filling [1].

The values of the filling transition critical exponents for d = 2 are certainly not identical to
those pertaining to critical wetting in the same dimensions. Recall that the critical singularities
of the wetting transition fall into one of three possible fluctuation classes (labelled the strong-,
weak- and mean-field-fluctuation regimes) with the universality only characteristic of the
former corresponding to p > 2 [7, 9, 10]. Nevertheless within the strong-fluctuation regime
for two-dimensional critical wetting the critical exponents describing the growth of the planar
liquid film thickness l(π) ∼ (Tw − T )−βs and roughness ξ (π)⊥ ∼ (Tw − T )−ν

(π)
⊥ have the

same numerical values (unity) [10, 11] as the critical exponents β0 and ν⊥ pertinent to a two-
dimensional fluctuation-dominated filling transition [1]. Here we denote the wetting exponent
as ν(π)⊥ so as to distinguish it from the exponent ν⊥ defined for filling. The question is, is this a
coincidence or is there a deeper connection between filling and wetting for d = 2 for systems
with short-ranged forces?

To test this latter possibility we have extended Kardar’s Bethe-ansatz study [7, 12] of
two-dimensional wetting with random bonds to filling in a wedge geometry. Fortunately,
the method generalizes quite easily and we are able to establish the existence of a filling
transition at temperature TF < Tw which is exactly in accordance with the thermodynamic
prediction. Moreover, we show that the mid-point height distribution PF (l0) for filling has
an identical scaling structure to that found for wetting with random bonds for d = 2, so the
critical exponents β0 and ν⊥ are once again identical to those for wetting. This invariance of
the probability distribution is elegantly expressed by the relation

PF (l0) = Pπ(l; θπ − α) (1.6)

where PF (l0) denotes the equivalent probability distribution for the case of critical wetting at
a planar substrate wall with contact angle θπ . This invariance is valid for both ordered and
disordered systems and is indicative of a fundamental relationship between the manifestation
of interfacial fluctuations in the two-dimensional wedge and planar substrate geometries
respectively. We believe this observation to be non-trivial and, if more generally valid, to
have important implications for other systems.

Our article is arranged as follows. In section 2 we review the theory of filling in
two-dimensional systems without bulk disorder where the identification (1.6) can be readily
established. Some of these results have been reported briefly before [1] but a fuller presentation
is given here. In section 3 we turn to the main technical part of our analysis and show how
Kardar’s Bethe-ansatz approach works equally well for the filling transition and naturally leads
to the result for the probability distribution quoted above. From this we observe the importance
of the value of the wetting specific heat exponent αs = 0 and then return to the ordered bulk
problem to discuss the case of marginal long-ranged forces. We conclude by discussing the
implications of our work and make a conjecture based on a generalization of (1.6) concerning
the structure of the probability distribution for finite-size effects at filling transitions. These
should be verifiable in future numerical transfer-matrix and/or simulation studies.

2. Wetting and filling in ordered systems (I)—general forces

To begin, it is worth recalling a few results connected with wetting at planar walls before
we proceed to the case of filling. The standard fluctuation theory of the transition in 1 + 1
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dimensions is based on the effective Hamiltonian model [6–11]

H [l] =
∫

dx

{
�

2

(
∂l

∂x

)2

+W(l)

}
(2.1)

where l(x) is the local interfacial height at position x along the wall, W(l) is the binding
potential and� denotes the interfacial stiffness of the unbinding interface. We will concentrate
on fluid interfaces for which � may be identified with the liquid–vapour surface tension. At
bulk liquid–vapour coexistence (µ = µsat), the binding potential is taken to have the general
algebraic form

W(l) = − a

lp
+
b

lq
l > 0 (2.2)

with a, b effective Hamaker constants and exponents q > p which denote the range of the
forces. It is well known [11] that the partition function Zπ(l1, l2;X) for an interface of length
X with end positions l(0) = l1 and l(x) = l2 can be expressed as a spectral sum (or integral if
scattering states are present)

Zπ(l1, l2;X) =
∞∑
n=0

ψn(l1)ψn(l2)e
−EnX (2.3)

where the eigenfunctions and eigenvalues satisfy the Schrödinger equation

− 1

2�

∂2ψn(l)

∂l2
+W(l)ψn(l) = Enψn(l) (2.4)

and we have set kBT = 1 for convenience. Thus, in the thermodynamic limit X → ∞, the
excess free energy of the wall–vapour interface fsing = σwv − (σwl + �), defined in terms of
the wall–vapour and wall–liquid surface tensions is simply

fsing = E0 (2.5)

from which we can identify the contact angle

θπ =
√

−2E0

�
(2.6)

via Young’s equation fsing = �(cos θπ − 1) in the small-contact-angle limit, for which the
model (2.1) is valid. Recall that at a wetting transition the singular free energy vanishes
as fsing ∼ (Tw − T )2−αs , so θπ ∼ (Tw − T )(2−αs)/2. Similarly the normalized probability
distribution for the interfacial height Pπ(l) is

Pπ(l) ≡ |ψ0(l)|2 (2.7)

corresponding to the standard quantum mechanical result. For later purposes it is also
convenient to define the matrix elements

〈m|f (l)|n〉 ≡
∫

dl ψ∗
m(l)f (l)ψn(l) (2.8)

which will appear in our description of the wedge geometry. Finally we note that the transverse
correlation length is given by

ξ‖ ∼ (E1 − E0)
−1 (2.9)

and characterizes correlations in the fluctuations of the interfacial height along the wall. As
remarked in the introduction, the fluctuation theory of wetting generally predicts the existence
of three fluctuation regimes for fixed dimensionality d < 3 [10]. In particular, for d = 2 the
critical behaviour belongs to the:
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(i) Strong-fluctuation (SFL) regime if p > 2. The critical exponents are universal with
αs = 0, βs = ν

(π)
⊥ = 1 and ν‖ = 2.

(ii) Weak-fluctuation (WFL) regime if p < 2 but q > 2. The critical exponents are non-
universal with αs = 2(1 − p)/(2 − p), βs = ν

(π)
⊥ = 1/(2 − p) and ν‖ = 2/(2 − p).

(iii) Mean-field (MF) regime if q < 2. The critical exponents are again non-universal with
αs = (q − 2p)/(q − p), βs = 1/(q − p) and 2ν(π)⊥ = ν‖ = (q + 2)/[2(q − p)]. Note
that for this regime βs > ν‖, so the transition is not fluctuation dominated.

Two other marginal or intermediate-fluctuation regions are also possible corresponding to
the boundaries of the regimes outlined above. These correspond to the cases in which either
the leading-order or next-to-leading-order decay terms are of order l−2. At the SFL/WFL
boundary this has a dramatic influence on the behaviour, leading to three more sub-regimes,
but at the WFL/MF boundary this corresponds to the potential

W(l) = − a

lp
+
w

l2
. (2.10)

The critical exponents αs , βs , ν
(π)
⊥ and ν‖ are unchanged from those quoted above for the WFL

regime. We will return to this case later in this article.
Before we turn to the case of filling we comment on the structure of the interface

height probability distribution function in the SFL regime. The scaling behaviour of Pπ(l)
characteristic of this regime emerges directly if we drop the potentialW(l) in (2.4) and use the
boundary condition [11]

∂ lnψ0

∂l

∣∣∣∣
l=0

= −λ (2.11)

where λ ∝ (Tw − T ) measures the linear distance from the wetting temperature. Thus we
obtain

Pπ(l) = 1

lπ
e−l/ lπ SFL (2.12)

where lπ ≡ 〈l〉 ∼ (Tw − T )−1 is the average interfacial height. This expression is valid in
the scaling limit T → T −

w , l → ∞ with l/ lπ arbitrary. For later purposes it is convenient to
rewrite this result in terms of the contact angle θπ ∼ (Tw−T ) to make its dependence explicit.
Thus we write

Pπ(l; θπ) = 2�θπe−2�θπ l SFL (2.13)

which is precisely equivalent to (2.12).
We now turn to the wedge geometry and outline the transfer-matrix calculation presented

in [1]. To extract the quantities of interest some care is needed with the thermodynamic limit and
we first consider a periodic wedge geometry defined over the horizontal range [−X/2, X/2];
see figure 1. The local height of the interface from the horizontal axis is written as y(x) with
periodic boundary conditions, y(X/2) = y(−X/2), and the height of the wall itself is written
as z(x) ≡ α|x|. The relative local separation of the two is denoted as l(x) ≡ y(x) − z(x).
For open wedges corresponding to small α (such that tan α ≈ α), it is already known from
previous mean-field analysis [5] that an appropriate effective Hamiltonian is

H [y] =
∫

dx

{
�

2

(
dy

dx

)2

+W(y − z)

}
. (2.14)

The partition function for this periodic wedge system is the functional integral over all
configurations

Zp =
∫

Dy e−H [y] (2.15)
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Figure 1. A schematic illustration of the wedge geometry in 1 + 1 dimensions with periodic
boundary conditions. The notation is defined in the text.

from which we calculate the free energy

Fp = − lnZp. (2.16)

The advantage of this choice of boundary conditions is that it allows us to easily extract the
excess wedge free energy Fw(α). To see this, note that in the thermodynamic limit X → ∞,
the periodic system reduces to two independent wedges with angles α and −α respectively.
The excess free energy is conveniently defined by

fw(α) + fw(−α) = lim
X→∞

(Fp − F ′
p) = − lim

X→∞
ln

(
Zp

Z′
p

)
(2.17)

where F ′
p ≡ − ln(Z′

p) denotes the free energy of a single wall of horizontally projected
length X, tilted at an angle α to the horizontal (with shifted periodic boundary conditions
y(X/2) ≡ y(−X/2) + αX). Equation (2.17) shows the independent contributions from the
wedge and inverted wedge arising in the thermodynamic limit. The partition function Zp is
equivalent to a fluctuation sum over all graphs l(x) = y(x) − z(x). Making this change of
variable, we rewrite the Hamiltonian as

H̃ [l] = �α2X

2
+ 2�α(l0 − le) +

∫ X/2

−X/2
dx

{
�

2

(
∂l

∂x

)2

+W(l)

}
(2.18)

where l0 ≡ y(0) is the mid-point height and le ≡ y(X/2) − z(X/2) is the edge (relative)
height. Consequently

Zp = e�α
2X/2

∫ ∫
dl0 dle Zπ

(
le, l0,

X

2

)
e2�α(l0−le)Zπ

(
l0, le,

X

2

)
(2.19)

whilst

Z′
p = e�α

2X/2
∫

dle Zπ(le, le, X). (2.20)

Substituting for the quantum mechanical spectral sum, we find in the thermodynamic limit
that

fw(α) = − ln〈0|e2�αl0 |0〉 (2.21)

where the inner product is defined in terms of the planar system eigenfunctions as in equation
(2.8). From the wedge free energy it is straightforward to calculate the mean value of the
mid-point height from (2.19):

〈l0〉 = − 1

2�

∂

∂α
fw(α) (2.22)

which by (2.21) reduces to

〈l0〉 = 〈0|l0e2�αł0 |0〉
〈0|e2�αł0 |0〉 . (2.23)
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Now by definition, the mean mid-point height 〈l0〉 is the first moment of the probability
distribution PF (l0) for the mid-point height, so we can immediately identify

PF (l0) = |ψ0(l0)|2e2�αł0

〈0|e2�αł0 |0〉 (2.24)

where the subscript on the left-hand side denotes filling. The same result for PF (l0) may be
derived in a number of ways and may be generalized to the mean height probability distribution
for any distance, x, away from the wedge centre [1, 13].

Analysis of equations (2.21), (2.22), (2.23) and (2.24) allows a complete classification of
the critical exponents for filling for d = 2 without bulk disorder [1]. Firstly it is clear that
the thermodynamic prediction for the filling phase boundary (1.1) is precisely obeyed in this
model, since from (2.2) and (2.4) the asymptotic decay of the ground-state wavefunction is
ψ0(l) ∼ e2�θπ l+O(l1−p) for all potentials W(l) that decay as l → ∞. Thus the distribution
function PF (l0) is only normalizable for temperatures T < TF with θ(TF ) = α. In the filling
fluctuation (FFL) region corresponding to p > 1, the scaling form of the distribution function
immediately follows as

PF (l0) = 2�(θπ − α)e−2�(θπ−α)l0 FFL (2.25)

and note that θπ − α ≈ TF − T as T → T −
F so β0 = ν⊥ = 1. For p < 1 the transition

is described by mean-field-like critical exponents as quoted in the introduction. The filling
transition with p = 1 is marginal and we will return to this later. Thus the scaling form
of the distribution function for fluctuation-dominated filling transitions is the same as that
encountered in the SFL regime. Thus for systems with purely short-ranged forces we can
conclude that

PF (l0; θπ) = Pπ(l; θπ − α) (2.26)

as stated earlier.
Finally we note that from equation (2.13) and equation (2.21) the explicit expression for

the wedge free energy is

fw(α) = ln

(
θπ − α

θπ

)
(2.27)

valid in the fluctuation-dominated regime p > 1 and for T < TF . Thus the wedge free
energy becomes singular as T → TF . For the model with short-ranged forces defined by
equation (2.11) this can be written as

fw(α) = ln

(
λ−�α

λ

)
(2.28)

which we will return to later.

3. Filling transitions with bulk random-bond disorder

Following the presentation of section 2, we first recall the pertinent details of Kardar’s treatment
of wetting at a planar wall with bulk disorder. Further details can be found in [7] and [12].
The model considered is an extension of the interfacial Hamiltonian (2.1) which accounts for
extra disorder arising from random bonds. We write

H [l] =
∫ X

0

{
�

2

(
∂l

∂x

)2

+ Vr(x, l(x))

}
dx (3.1)
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where the random variable Vr(x, l(x)) is taken to be Gaussian and has the following statistical
properties:

V (x, li[x]) = 0 (3.2)

and

Vr(x, li[x])Vr(x ′, l′i[x])− Vr(x, li[x])][Vr(x ′, l′j [x]) = 3δ(x − x ′) δ(li(x)− l′j (x
′)) (3.3)

where the overbar denotes a quenched average with respect to bulk disorder. Again setting
kbT ≡ 1 we define κ ≡ 1

2 3� which may be interpreted as the inverse length scale induced by
the bulk disorder. Thus in the limit κ → 0 we should recover the results for the corresponding
ordered system. In particular for our wedge problem we will require that as κ → 0 we recover
the properties of the filling transition presented in section 2. Continuing our discussion for the
wetting case, we note that the starting point for the calculations is the replica trick identification

lnZπ = lim
n→0

Znπ − 1

n
(3.4)

whereZnπ may be interpreted as the partition function for n non-interacting interfaces in a bulk
random medium. Performing the averaging over the disorder variables one finds

Znπ =
∫

Dl1 · · · Dln e−H(n)[l1,...,ln] (3.5)

where the multi-field interacting interfacial Hamiltonian is specified by

H(n)[l1, . . . , ln] =
∫ X

0

{ n∑
i=1

[
�

2

(
∂li

∂x

)2

+ V (x, li) + U(li)− 1

2
β 3δ(0)

]

− 3

n∑
i<j

δ(li − lj )

}
dx. (3.6)

From here on, the problem is reduced to a standard transfer-matrix calculation and we can
identify

Znπ({li};X) =
∞∑
m=0

7(n)∗
m ({li})7(n)

m ({l′i})e−EmX (3.7)

where 7(n)
m is the ‘mth’-state wavefunction with eigenvalue Em for the ‘n’-field interacting

model and {li}, {l′i} denote the two sets of end-point values for the n interfaces. The spectrum
is determined by the solution of the eigenvalue problem

�H(n)7(n)
m = E(n)m 7(n)

m (3.8)

where the Hamiltonian operator is specified as

�H(n)[l1, . . . , ln] = n

(
V − 1

2
β 3δ(0)

)
− 1

2�

n∑
i=1

∂2

∂l2i

− 3

n∑
i<j

δ(li − lj ) +
n∑
i=1

U(li). (3.9)

For systems with short-ranged forces the fluid potential term in (3.9) may be dropped and
replaced by the boundary condition [7]

∂ ln7(n)
m

∂l

∣∣∣∣
l=0

= −λ (3.10)
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where we recall from (2.11) that λ is an inverse length scale that may be regarded as a linear
measure of the divergence from the wetting temperature of the ordered system. For this choice
of model system, the ground state of the eigenvalue problem (3.8) is solved by a Bethe-ansatz
wavefunction of the form

7
(n)
0 = Cn(λ, κ)e

−λ∑
li+κ

∑
i<j |li−lj | (3.11)

where Cn is a normalization constant which be evaluated [7, 12] as

Cn(λ, κ) = 2n/2κn/2
(
9(λ/κ + 2n− 1)

9(λ/κ + n− 1)

)1/2

(3.12)

and 9(x) denotes the usual gamma function. The energy of the ground state follows

E
(n)
0 = − 1

2�

(
λ2 + 2λκ(n− 1) +

2κ2(n− 1)(2n− 1)

3

)
(3.13)

from which we can identify the singular part of the free energy via

fsing = − (λ− κ)2

2�
(3.14)

and hence the contact angle θπ = (λ − κ)/�. From this we can conclude that the wetting
transition temperature is lowered by the effect of bulk disorder. In addition we note that the
critical exponent αs is equal to zero—just as in the SFL regime for the case of ordered bulk
systems. The mean height of the interface can also be calculated in a straightforward manner.
From the replica trick we observe that

lπ = lim
n→0

{
1

n

∑
li

}
(3.15)

which by (3.12) reduces to

lπ = lim
n→0

1

n2n
∂

∂λ
lnCn (3.16)

and hence

lπ = κ

(λ− κ)2
(3.17)

so the critical exponent βs = 2. Forgacs et al [7] also describe the calculation of the probability
distribution function. Formally this can be written in terms of the replica trick many-body
wavefunction as

P(l) = lim
n→0

1

n
P (n)(l0) =

∫ ∞
0 · · · ∫ ∞

0 dl10 · · · dln0 δ(l − l1)C
2
n|7(n)

0 ({l(i)0 })|2∫ ∞
0 · · · ∫ ∞

0 dl10 · · · dln0 C
2
n|7(n)

0 ({l(i)0 })|2
(3.18)

the Laplace transform of which can be evaluated explicitly as

P̂ (p) = 1

n

n∑
i=1

n∏
j=i

(σ + 2n− j)j

(σ + 2n− j)j + p/2κ
. (3.19)

Upon making certain non-trivial simplifying assumptions, Forgacs et al [7] argue that this
expression can be reinverted to given an explicit for P(l), but the details of this will not be
relevant to our discussion here, as will be shown.

We now turn our attention to the wedge geometry and consider the filling transition with
random bonds in the bulk. The geometry is identical to that specified in section 2 for the ordered
bulk system: we consider a wall with height given by z(x) = α|x| extending over the range
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[−X/2, X/2]. Periodic conditions on the edge-point interfacial heights y(x) at x = ±X/2 are
also applied. The effective interfacial model is defined as

H [y] =
∫ X/2

−X/2
dx

{
�

2

(
∂y

∂x

)2

+ Vr(x, y) +W(y − z)

}
(3.20)

which is the natural extension of wedge model (2.14) to disordered systems. Following
our earlier description of ordered filling transitions, the partition function or propagator is
conveniently decomposed into contributions from interfacial fluctuations between −X/2 and
0 and from 0 toX/2 by rewriting the Hamiltonian in terms of the local relative height l ≡ y−z:

H̃ [l] = −�α
2X

2
+ 2�α(le − l0) +

∫ X/2

−X/2
dx

{
�

2

(
∂l

∂x

)2

+ Vr(x, l) +W(l)

}
. (3.21)

Taking n replicas and averaging over the disorder we immediately find

Zn = en�X
2/2

∫
dl(1)e · · · dl(n)e

∫
dl(1)0 · · · dl(n)0 e2�α

∑n
i=1(l

(i)
0 −l(i)e )[Z

(n)

π ({l(i)e }, {l(i)0 };X/2)]2

(3.22)

where Z
(n)

π is the planar propagator for the disordered system. In the x → ∞ limit only the
ground-state contribution toZπ survives, so we can substitute for the appropriate Bethe-ansatz
wavefunction (3.11). Crucially the additional exponential terms in (3.22) do not change the
form of the integrals and effectively redefine the parameter λ �→ λ − �α. It is this fact that
makes the model integrable and means that the values of the integrals can be written in terms
of modified normalization constants. We define the wedge free energy in exactly the same way
as before by subtracting from lnZ a ‘bulk’ term lnZ′ representing the free energy of a tilted
interface with wall function z = αx over the range [−X/2, X/2]. Again the contributions
from the wedge and inverted wedge must be taken into account to give

fw(α) + fw(−α) = − lim
X→∞

ln

(
Z

Z′

)
. (3.23)

In terms of the replicated partition functions this is

fw(α) + fw(−α) = lim
n→0

1

n
(Zn − Z′n) X → ∞ (3.24)

which from (3.22) allows the identification

fw(α) = lim
n→0

1

n

(
Cn(λ−�α, κ)2

Cn(λ, κ)2
− 1

)
. (3.25)

Using the known function form of Cn from the planar distribution (3.12) we conclude that

fw(α) = :(λ−�α)−:(λ) (3.26)

where :(x) ≡ ∂ ln9(x)/∂x is the digamma function. Equation (3.26) is the first important
new result of this section and represents an explicit and rather elegant expression for the wedge
free energy of a disordered two-dimensional system. Notice that when α → 0 the wedge free
energy vanishes, so we recover the planar interfacial free energy. Less trivial is the limit κ → 0
corresponding to zero disorder. Here we require that the expression for fw(α) reduces to the
known result derived earlier (2.21) for systems with short-ranged forces in an ordered bulk
medium. As κ → 0 the argument of each digamma function diverges and we can use Stirling’s
formula

9(z) ∼ zz−1/2e−z z → ∞ (3.27)
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implying that

:(z) ∼ ln z− 1 +
1

2z
z → ∞. (3.28)

Thus in the limit κ = 0 we obtain

fw(α) = ln

(
λ−�α

λ

)
κ = 0 (3.29)

which is identical to our earlier result for filling with short-ranged forces in the absence of bulk
disorder, equation (2.28). This is an important check on the self-consistency of the replica
trick calculation.

From (3.28) and (3.33) we can see that the location of the filling transition in the disordered
system is given by the condition

α = λ− κ

�
(3.30)

which, by virtue of (3.14), is equivalent to

θπ = α (3.31)

in precise accord with the thermodynamic prediction. As T → T −
F , the wedge free energy

becomes singular and, from the asymptotics of :(z) as z → 0, we conclude that

fw(α) ∼
(
λ−�α − κ

κ

)−1

. (3.32)

Differentiating this with respect to α yields an expression for the mid-point height in the
wedge:

l0 ∼ 1

κ(λ−�α − κ)2
(3.33)

which implies that the filling critical exponent β0 = 2 for this system. Thus the divergence
of the mid-point height at a filling transition is characterized by the same critical exponents
as those that determine the interface thickness at a planar wetting transition. This equivalence
can be made more precise by computing the mid-point height probability distribution PF (l0)
which from the transfer-matrix theory is given by

PF (l0) = lim
n→0

1

n
P
(n)
F (l0)

=
∫ ∞

0 · · · ∫ ∞
0 dl10 · · · dln0 δ(l − l1)e2�α

∑n
i=1 l

(i)
0 C2

n|7(n)
0 ({l(I )0 })|2∫ ∞

0 · · · ∫ ∞
0 dl10 · · · dln0 e2�α

∑n
i=1 l

(i)
0 C2

n|7(n)
0 ({l(i)0 })|2

. (3.34)

If we now substitute for the Bethe-ansatz wavefunctions in this expression, (3.34), it becomes
immediately clear that this function can be brought into a precise equivalence with that obtained
in the planar case by the simple redefinition λ �→ λ−�α. We then readily conclude that

PF (l0) = Pπ(l; θπ − α) (3.35)

since replacing θπ by θπ − α in (3.18) is equivalent to this redefinition of λ.

4. Wetting and filling in ordered systems (II)—marginal forces

The explicit calculations of the previous two sections have shown that for systems with short-
ranged forces the mid-point height probability distribution function PF (l0), near filling, has
the same functional form as the height distribution function Pπ(l, θπ ) at wetting occurring in
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systems with short-ranged forces. This is true for both ordered and disordered systems. One
common feature of two-dimensional wetting in ordered and disordered systems with short-
ranged forces is that the value of the specific heat critical exponent αs = 0. Given that this
exponent also dictates the singular behaviour of the contact angle θπ ∼ (Tw − T )(2−αs)/2, it
is natural to enquire whether or not this vanishing of the critical exponent pertaining to the
wetting specific heat is central to the covariance of the probability distribution. To test this
hypothesis we return to the case of filling in ordered systems and concentrate on the marginal
case p = 1. Recall that for p > 1 the scaling of PF (l0) is the same as that for short-ranged
forces. For p < 1 the distribution function PF (l0) does not show scaling with a single length
scale since the transition is mean-field-like and l0 � ξ⊥. The question that we address here
is: what is the behaviour of PF (l0) at the fluctuation-dominated/MF borderline and how is this
related to a wetting distribution function? To this end, consider a binding potential of the form

W(l) = −a
l

+
w

l2
(4.1)

where we have included a marginal repulsive interaction. For the planar geometry this potential
describes a wetting transition (occurring as a → 0+) belonging to the WFL/MF borderline. The
values of the critical exponents are αs = 0, βs = 1, ν⊥ = 1 and ν‖ = 2. This model therefore
corresponds to a third example of a fluctuation-dominated two-dimensional wetting transition
in which the critical exponent αs = 0. The form of the wetting probability distribution function
is easily calculated from the solution of the Schrödinger equation (2.4) for the ground-state
wavefunction. We find

Pπ(l; θπ) = Nl1+
√

1+8w�e−2�θπ l WFL/MF (4.2)

with θπ ∝ (Tw − T ) and with a normalization constant N = N(w�,�θπ). Although the
numerical values of the critical exponents at the wetting transition are identical to those pertinent
to the SFL regime, the distribution functions are not the same. Indeed the non-trivial short-
distance expansion of (4.2) means that fluctuations that bring the interface near to the wall
are less likely than in the SFL regime. If we now consider a filling transition occurring in a
wedge geometry with the binding potential (4.1), we immediately conclude from the general
transfer-matrix result (2.19) that the mid-point height distribution is

PF (l0) = Nl
1+

√
1+8w�

0 e−2�(θπ−α)l0 WFL/MF (4.3)

which is identical in form to (4.2), with θπ simply replaced by θπ − α.

5. Discussion

Gathering together all of our results, we are led to the following conclusion: if a two-
dimensional planar system exhibits a wetting transition with large fluctuation effects (i.e. with
lπ ∼ ξ⊥) and has a vanishing specific heat exponent αs = 0, then the distribution function
Pπ(l, θπ ) also determines the scaling of the mid-point height probability PF (l0) occurring for
the filling transition in the non-planar wedge geometry:

PF (l0) = Pπ(l, θπ − α). (5.1)

This simple relation completely classifies the allowed critical singularities for fluctuation-
dominated filling transitions in two-dimensional systems. In particular, for ordered and
disordered systems with short-ranged forces the values of the filling critical exponents are
β0 = 1 and β0 = 2 respectively.

At this stage two pertinent remarks are in order which serve to reinforce the differences
between wetting and filling. Firstly, any direct relationship between wetting and filling is a
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special property of two-dimensional systems. As discussed in the introduction, in higher
dimensions, the dominant fluctuations at filling transitions arise due to the anisotropy of
the correlation length measured across (ξx) and along (ξy) the system. Consequently it is
important that wetting and filling be considered as quite distinct examples of interfacial critical
phenomena with very different critical singularities. In two dimensions, ξy is no longer defined
and the essential anisotropy does not manifest itself.

Secondly, even for d = 2, the full phenomenological descriptions of wetting and filling
are clearly not identical. It is not the case that two-dimensional filling may be viewed as a
wetting transition shifted to a lower transition temperature. To see this, recall that at a two-
dimensional wetting transition the transverse correlation length ξ‖ (measuring fluctuations
along the substrate) diverges with critical exponent ν‖ = 2 as T → T −

w , whilst at filling
the correlation length ξx diverges with exponent νx = 1 as T → T −

F . Thus the anisotropy
of fluctuations in the vertical (l-) and transverse (x-) directions are quite different for two-
dimensional wetting and filling.

Our work is strongly suggestive that there exists a mapping or covariance for the one-point
interfacial height probability distribution function for two-dimensional systems (with short-
ranged forces) occurring near related phase transitions in different geometries. Whilst we do
not know the most general form of this invariance relating the distribution functions for more
general types of bounded two-dimensional geometries, it is very tempting to generalize our
central result (1.6) and make a conjecture for finite-size effects occurring at filling transitions.
This may be tested in further numerically based transfer-matrix and computer simulation
studies of various model systems.

For concreteness we deal with Ising spin systems and concentrate on pure thermal
excitations where much is already known about finite-size effects at wetting. Consider an
Ising strip of width L (which is much greater than the correlation length ξb) and of infinite
extent in the other (x-) directions. Surface fieldsH1 andH2 act on opposite surfaces of this strip
and induce an interface that is free to wander within the confined geometry. For this system a
number of detailed predictions have been made (and confirmed) for the form of the one-point
probability distribution P(l;L, T ) [14, 15]. This is known to exhibit scaling behaviour both
at (and above) the wetting temperature Tw of the semi-infinite system. In particular, exactly
at Tw, the interface wanders freely between the confining walls and has equal probability of
being found at any particular height. Thus

P(l;L, Tw) = 1

L
(5.2)

which in turn means that the mean local magnetization m(z) at distance z across the strip is
given by

m(z) = m0

(
1 − 2z

L

)
(5.3)

where m0 denotes the bulk spontaneous magnetization. These predictions, based on the
analysis of interfacial Hamiltonian models [14, 15] and general short-distance expansion
expectations, are fully confirmed by Ising model studies [14, 16, 17].

Now consider a finite-size, or double-wedge, system of (vertical) diagonal width L with
local fieldsH1 andH2 acting on the respective lower and upper surface layers. One example of
this is the finite-size, square Ising model shown in figure 2. This choice of boundary condition
induces an interface that stretches across the horizontal diagonal of the square lattice. In the
limit L → ∞ the system decouples into two independent wedge geometries each of which
exhibits a filling transition at temperature TF < Tw. The lower wedge is filled by up spins
whilst the upper wedge is filled by down spins. We now ask what the probability distribution
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Figure 2. The finite-size double-wedge system. The sides marked with positive signs indicate
walls with positive surface field which shows a preference for the up-spin phase and vice versa.

PF (l0;L, TF ) is for finding the mid-point interfacial height l0, for a finite-size system exactly
at the (semi-infinite) filling transition temperature TF . On the basis of the known invariance
of PF (l0) for the semi-infinite system, we conjecture that the distribution function for the
finite-size system is simply related to that of the corresponding planar Ising strip. That is,

PF (l0;L, TF ) = P(l;L, Tw) (5.4)

which implies that the inhomogeneous magnetization profile m(z, x) satisfies

m

(
z,
L

2

)
= m0

(
1 − 2z

L

)
. (5.5)

Note that this prediction implies that the vertical, r.m.s. fluctuations of the interface in the
z-direction are of the same order as the overall length of the interface in the x-direction. This
is quite different to finite-size effects occurring at wetting, where the vertical fluctuations are
of order the square root of the interface length (for d = 2). Again this serves to emphasize
that any invariance of the one-point probability distribution function for wetting and filling
does not imply that the two phase transitions have identical character. We also remark that if
the conjectured relations (5.4) and (5.5) are confirmed by detailed numerical studies, then the
characteristic finite-size scaling properties of PF (l0;L, TF ) could provide an effective method
for determining the location of the filling transition temperature TF . For T > TF we do not
anticipate PF (l0;L, T ) to have a simple scaling form, since this function is characteristic of
finite-size effects at complete filling which do not exhibit strong interfacial-fluctuation-related
behaviour.

In summary, we have shown by explicit calculation that the one-point probability
distribution functions for filling and wetting in (1 + 1)-dimensional ordered and disordered
systems are related and have identified the critical exponents that characterize the filling
transition in 1+1 dimensions. The calculation for random-bond systems is new and generalizes
Kardar’s Bethe-ansatz techniques to wedge geometries. On the basis of these observations we
have made conjectures for the probability distribution and magnetization in finite-size wedge
systems which can be tested in future studies.
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